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Summary

The paper deals with two cases of repeated row-column designs with split plots in
which either one of the whole plot or one of the subplot treatments is a control
treatment.

In the first case considered, with control on whole plots, the row-column design
consists of two rows and two columns (4 whole plots) and each whole plot is complete
with respect to subplot treatments. One of the test treatments and the (whole plot)
control treatment occur once in a row and once in a column.

In the second case, the whole plot treatments are arranged in a Latin square and
each whole plot has only two subplots. We assume that one of the subplot test
treatments and subplot control occur on each whole plot.

To improve statistical properties of the design we recommend to repeat the whole
design ¢ times.

In the paper we give a characterization of these designs with respect to the general

balance property. Moreover, we characterize the design with respect to the efficiency
balance.

1. Introduction

Let us consider an experiment utilizing the material with structure described

below. An experimental material is divided into %, rows and k, columns, similarly
as in a row-column design. The plot being an intersection of a row and a column
is called the whole plot. This means that we consider ordinary row column designs
only. Let each whole plot then be divided into k4 subplots. The experimental
material of the above structure will be called a superblock. A two-factorial
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experiment with k&, superblocks, in which levels of one facior, A, are arranged
on the whole plots and levels of the second factor, B, are arranged on the subplots,
has been described in detail previously (Kachlicka and Mejza, 1990, 1995).

Two cases, interesting for an experimenter, are considered in this paper. In
the first case one of the levels of factor A, say A, is a control treatment (or
standard). The other levels of factor A are called test treatments (or whole plot
test treatments). One of the levels of factor B is a control treatment (or standard)
in the second case. Similarly, the other levels of factor B are called test treat-
ments (or, more exactly, subplot test treatments). The purpose of the experiment
1s to compare test treatments with the control as precisely as possible for a given
structure of the experimental design. In this paper we restrict our considerations
to the (potential) experimental material, where only two plots are available to
the treatments including the control. There are some ways to arrange test and
control treatments on the blocks of size two. The recommended design, known
as the Cox design, {cf. Cox, 1958) is such that (within each block) the control
occurs on one plot and one of test treatments on the other. In the paper we give
a characterization of the Cox type design, for whole plot treatments or subplot
treatments, with respect to its efficiency. More exactly, the designs considered
are complete with respect to the treatments not including the control, while they
are incomplete with respect to treatments including the control. Two possible
cases of such a design are examined.

The Cox’s type of design is usually used in the situation where only two natural
experimental units are available. For example, in the experiments dealing with
leaves we can situate units on the left and right part of the leaf. Many biological
and medical experiments deal with twins. Then the proposed design is recom-
mended. Moreover, the proposed design is useful also in experiments utilizing
double organs, e.g. kidneys, eyes, or two symmetrical parts of the body, e.g. hands,
legs.

The designs considered may be very useful in factorial experiments in which
one of the factors (e.g. whole plot treatments) is related to irrigation. In this case,
it may be convenient to design an experiment in such a way that on whole plots
no irrigation as well as one of the levels of irrigation is applied. The different
levels of fertilization would constitute, for example, the subplot treatments.

2. Experiment with Ag as a control treatment.

Let us consider a two-factorial experiment in which one of a+1 levels of factor
A is the control level Aj (whole plot control).

Moreover, let us assume that %, superblocks are composed of two rows and
two columns, i.e. k| = k, = 2. The control treatment A, occurs on one whole plot
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within each row and each column and one of the remaining levels of A occurs on
the other whole plot. Each whole plot is divided into & subplots on which all
levels of factor B (subplot treatments) are arranged (k3 = ). The minimal design
has a superblock, in which the whole plot test treatments are replicated 2 times
while the control — 2a times. This design is repeated ¢ times (%, = at) to improve
statistical properties of estimators.

For example, a superblock in which the control treatment A, and one test
treatment occur, may be schematically expressed as follows:

Ao A
B, ] B, | { B, | B, ( By | | B,
A; Ap
B, ’ B, 1 l B, | B, ‘ By | | B,

The number of treatments (treatment combinations) is equal to v = (a + 1)b
while the treatment replication vector has the form

a

r =2t {1

] 1, ,
a
where ® denotes the Kronecker product of matrices.

Since the described design has the orthogonal block structure (according to
Nelder, 1965 and Houtman and Speed, 1983) the total information on treatment
comparisons may be divided into five independent strata. The strata are as
follows: zero stratum (called also total area stratum); first, inter-superblock
stratum; second, inter-row stratum; third, inter-column stratum; fourth, inter-
whole plots stratum; and fifth, inter-subplot stratum. In fact there are six strata
but the information concerning treatment contrasts is contained in non zero
strata. The strata are connected with randomization performed in the experi-
ment. In the paper we deal with the linear model resulting from randomization
of superblocks, rows, columns, whole plots and subplots. (For details concerning
this model the reader is referred to Kachlicka and Mejza, 1990, 1995).

The analysis of variance appropriate for multistratum experiments with the
orthogonal block structure is based on the so called information matrices for the
strata. To find them, let us define the incidence matrices N;, i=1,2,3,4, for
superblocks vs treatments, rows vs treatments, columns vs treatments and whole
plots vs treatments. These incidence matrices have the forms:

ll
N, =2 1;@[{]@% ,
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ll
N2=1;®[I"]®1§®1b ,

a

1(
N3=1;®{Ir]®l'z®lb ,

a

1,® [1001
N4=1;®[ [ ]] 1, .

I,® [0110]

The strata information matrices are expressible in terms of association ma-
trices, which for the considered design have the following forms:

, a 1
NN/ = 4¢ LI, ®d;, ,

, a 1,
NNp=2¢ |} '|©J,

N;3N3= NoNs

0'
NN, =2¢ [(;l I“] ®dy =1L ®d,, where J, = 1,1;,.
The statistical properties of a design are connected with the structure of the
so called C matrices, associated with the blocks of the design, i.e. where super-
blocks, rows, columns and whole plots play the role of blocks.

Now, the C-type matrices, C;, i=1,2,3,4,5, may be expressed as follows:

0 0,

t
Co = (oo NN = (bl o) gy’ = &
1 (616263) 14N (6061 26.3) rr Ou I“-a,‘l :

b

b

C, = (k) 'NuNj— (k1hoks) "N Ny =0 |
Cy = (kyky) 'NyNYy - (kikoks) 'N;Nj= 0 ,
Cy = k3 NNy~ (koks) "NgNy— (k1feg) "NoNp+ (ke heokes) "N N =

t a _l’n
- E [_lu Izt]®Jb ’

Cs=r"-k3'NN=r\ @1, -079,) .

An additional property, called general balance, is very helpful in planning
multistratum experiments, and simplifies drawing conclusions (for details the

reader is referred to Houtman and Speed, 1983). It is easy to check, that the
matrices C; mutually commute with respect to (w.r.t.) ) ie.
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Cil'—aCir = Ci,l‘_bci ) l:,l:' = 1,2,3,4,5, i#l” 5

This means that the considered design is generally balanced (cf. Mejza, 1992).
From this property one can conclude that the matrices C;, i=1,2,34, 5 have a
common set of r’-orthonormal eigenvectors p,(U=12,...0), ie. p;r pj =0,
where 8, is Kronecker’s delta.

One of possible sets of such eigenvectors may be found as follows:
P =P, ®Pg, » h=0,,.,a i=1.2,...b,
Pa, = IWe+1[1 -1 -1...-1 -17,
Pa, = W20 1-1..0 0],

Pa, = Wale-1)[0 1 1...1 ~(a-1)],
pa=1Va+T[111..11],
Pp,=1V2[1 -1 0...0],

py, =121 1 -2..0],

Py = IVO(b-T)[1 1 1...-(b-1)],
Py, = WOl 1..1].

Let ¢; denote the eigenvalue of matrix C; w.r.t.»*, j =1, 2 LU, 1=1,2,3,4,5.
Note that C;1=0, and hence pjr ®1 =0, i.e. the vectors P; r’ deflne a contrast
p;r %, which is called the basic contrast, j =1,2,...,u-1 (y denotes the vector of
treatment combination parameters). From the equality

2 g; =1, for all j<v ,
i

it results that the eigenvalues ¢; may be identified as the i- th stratum efficiency
factors of the design with respect to the basic contrast p;r .

The structure of matrices C;, i = 1,2,3,4,5, shows that their eigenvalues w.r.t.
r’ are as follows:

for Ci:a-1 eigenvalues are equal to 0, i.e. £ =05 and the remaining
{a+1)(b-1)+2 eigenvalues are equal to 0, i.e. £ = 0,

for C2and Cy: all eigenvalues are equal to 0, ie. ¢ =0,

for Cy:one eigenvalueis equaltol,iec = 1; a-1 eigenvalues are equalto 0, i.e.

¢ = 0.5 and the remaining (a+1)(b-1)+1 eigenvalues are equal to 0, i.e.
e=0,
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for Cj;: (a+1)(b-1) eigenvalues are equal to 1, i.e. ¢ =1; the remaining a+l
eigenvalues are equal to 0, i.e. € = 0.

Thus, the structure of C-matrices indicates that:

(1) no contrasts are estimated in the second and third strata;

(i1) all the contrasts concerning the levels of factor B and interaction AxB are
estimated with the full efficiency (¢ = 1) in the fifth stratum;

(iii) contrast enabling comparison of the control treatment A; with the mean
effect of all test treatments can be estimated with the full efficiency in the fourth
stratum;

(iv) elementary contrasts among test treatments A; and the control are esti-
mated in the fifth stratum with efficiency equal to (a+1)/2a,

(v) the contrasts among test treatments A only are estimated in the first and
fourth strata with the same efficiency factors equal to 0.5.

3. Experiment with By as a subplot control treatment

In this section we consider a two-factorial experiment in which one of b+1
levels of factor B is the (subplot) control treatment, B,. According to the metho-
dology of the paper, the design is complete with respect to the whole plot
treatments, i.e. a superblock may consist of @ rows and a columns (£ =k, = a).
Levels of factor A should be arranged on whole plots as in a Latin square of
axa type. Additionally each whole plot should be divided into two subplots
(k4 = 2) (as in the Cox type of design). On each whole plot, of the given superblock,
one of the levels of factor B with the control B are arranged. This design is
repeated ¢ times (kg = bt). An exemplary superblock has the form which sche-
matically may be expressed as:

A, Ay A,
By I B; | By l B, | | By ] B;
A, A, A
By l B; | By | B |7 By l B;
Ag Ay A
Boi B; 1;(,,1 B | 7By B

The number of treatments (treatment combinations) is equal to v = a(b+1),
while the treatment replication vector has the form
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r=atl,® b
r=atl, 1|

The association matrices with respect to superblocks, rows, columns and whole
plots have the structures:

‘ ; b 1
N,N\=d%dJ,® [ l’] ,
1, I,

, b1,
N2N2= at Ju ® [lb ijl )

NoNj = NoN;
b 1,
" J]
NNy=atl, ® [lb Ib] .
The strata information matrices, defining properties of the design, are as follows

Ui
2

0 0;
Cl = J[l ® b~1
0, I,-67dJ,

>

C?‘:CS:O s

b 1
C4=a_t(I(L—a‘lJ(,)®[1’ Ib,] ,
_atp o6 L
h 2 4 —'lb Ib ’

From the structure of these matrices it results that the eigenvalues of C; w.r.t.

d
r are:

for C1: a eigenvalues are equal to 0.5, i.e. ¢ = 0.5; the remaining ab eigenvalues
areequal 0,ie.£=0
for Cyand Cg all eigenvalues are equal to 0, i.e. £ =0,
for C4: a—1 eigenvalues are equal to 1, i.e. ¢ = 1; (a—1)(b—1) eigenvalues are equal
to 0.5, 1.e. ¢ = 0.5; the remaining a+b eigenvalues are equal to 0, i.e. ¢ = 0,
for C5: aeigenvalues are equal to 1, i.e. & = 1; a(b—1) eigenvalues are equal to 0.5,
i.e. ¢ = 0.5; and remaining ¢ are equal to 0, i.e. ¢ = 0.
It can be checked that this design is also generally balanced. From this the
following statements may be inferred:

(i) no contrasts are estimated in the second and third strata;
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(ii) all contrasts concerning levels of factor A are estimated in the fourth
stratum with the full efficiency;

(iii) contrast between the control level B and the remaining test treatments
B,, is estimated in the fifth stratum with the full efficiency;

(iv) elementary contrasts among test treatments B; and control are estimable
" in the fifth stratum with efficiency equal to (b+1)/25,

(v) contrasts among test treatments B; are estimated in the first and fifth
strata with efficiency equal to 0.5;

(vi) a-1 interaction contrasts, including test treatment B, are estimated with
full efficiency in the fifth stratum; while remaining (a—1)(b—1) interaction con-
trasts (without By) are estimated in the fourth and fifth strata with the same
efficiency equal to 0.5.

4. Example

Let us consider a potential field experiment in which we observe the influence
of three levels of irrigation (whole plot treatments) and of three levels of nitrogen
fertilization (subplot treatments) on the yield of potatoes. Usually, the plots with
no irrigation constitute the control as in our potential experiment. From technical
point of view it is convenient to use row-column designs with two rows and two
columns for the irrigation.

Hence, for the b=3, fky=3,
ky=2,ky=2,ky=23, n=36.Schematically, a non-randomized plan of design may
be expressed as follows:

smallest experiment we have a=3,

Ay Ay Ay Ay Ay Ay

B, | By 1 By | B, IBZ | By| | B, | B, } By | B, ] B, ] By| | B, |32 | Bs | B, }BQ | By
Ay Ay Ay Ay Ay Ag

B, 132 ’ By | B, ] By \ Byl | B | By l By | B, 11;2 J By| | B, l By ] By | B, | By ’ By

From this structure it is easy to find the treatment replication vector and the
incidence matrices Ny, Ny, N3 and Ny

r=[66622222222 2],
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6-3-3 0 0 0 0 0 0 0 0 0]
-3 6-3 0 0 0 0 00 0 O O
-3-3 6 0 0 0 0 0 0 0 0 O
0o 0 0 2-1-1 00 0 O0C O O
0 0 0-1 2-1 0 0 0 0 0 O
C 210606 0-1-1 2 000 O0O0O0
573 00 0 00 0 2-1-1 0 0 O0f°
0 0 00 0 0-12-10 00
6 0 000 0-1-1 2 0 0 O
0O 0 000 00 OC O 2-1-1
00 000 000 0-1 2-1
O 00060 0 0 0 0-1-1 2

Let us define the set of orthonormal vectors as follows:
Pa=12 (1 -1 -1 -1],
Pa= V2 [0 1 -1 0],
Pa,= N6 [0 11 -2],
Pa=1/2 [1111]
Pp= W2 [1 -1 0]
Ps= V6 [1 1 -2],
pp=1¥3 [1 1 1],

The efficiency factors of the design with respect to the basic contrast p; ry
are given in Table 1. From Table 1 we see that nitrogen fertilization effects and
interaction effects are compared with full efficiencies (as in complete design).
Only, because of incompleteness with respect to whole plot treatments, we suffer
the loss of information concerning the irrigation effect comparisons. To improve
the statistical properties of irrigation contrast estimators some methods of com-
bining estimators or tests may be applied.

4. Final remarks

The paper deals with two cases of a split-plot type design in which whole plot
treatments are arranged in a row-column design. The designs are Cox’s type
designs with respect to whole plot treatments and complete with respect to
subplot treatments (Section 2), complete with respect to whole plot treatments
and Cox’s type design with respect to subplot treatments (section 3).

In the split plot experiments the comparisons among the subplot treatment
effects and among the interaction effects are more interesting than comparisons
among the whole plot treatment effects. Hence, the first case of designs con-
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Table 1
Strata efficiency factors of basic contrasts defined by vectors c.

Vectors e Type : Str;ta efﬁci;ncy faciors .
¢, =r’py @ pp, B 0 0 0 0 1
€9 = l‘bPAS @ Pg, B 0 0 0 0 1
c3 = l‘bPAU ® Py, Ap 0 0 0 1 0
cs=r’ps ®py, A 1/2 0 0 1/2 0
c5 =r’pa, ® pp, A 1/2 0 0 1/2 0
e = r'Pa, © Py, Ag<B 0 0 0 0 1
Cy® l'bPAO ® pg, ApxB 0 0 0 0 1
cg = ri’pAl ® Pp, AxB 0 0 0 0 1
cg = l‘prl ® pp, AxB 0 0 0 0 1
Cjo= l'E)I)A2 @ Ppg, AxB 0 0 0 0 1
ey =r’py, @ pp, AxDB 0 0 0 0 1

sidered (Section 2) is more natural and it may find more applications than the
second one, especially in agricultural experiments. The second case of design is
considered at least with respect to the symmetry and completeness of theory for
the designs considered. It may also find application in experiments in which the
size of whole plots is either naturally or technically limited.

The full characterizations of these two kinds of designs with respect to the
efficiency factors are given. The properties connected with efficiencies in the
strata are very useful in the planning of experiments on a restricted structure
of experimental material. From the relationships among stratum error variances,
it follows that the treatment contrasts of great interest should be estimated in
the stratum as high as possible, preferably in the fifth stratum.

Finally, let us note that the proposed designs are new and the authors do not
have real examples. We do hope that desirable practical and statistical properties
of designs proposed will cause their common use in practice.
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Uklady Coxa w powtorzonym ukladzie
wierszowo-kolumnowym z rozszczepionymi
jednostkami i obiektem kontrolnym

Streszczenie

Praca dotyczy powtdérzonego ukiadu o jednostkach pojedynczo rozszezepionych, w
ktérym czynnik pierwszego rzedu wystepuje w ukladzie wierszowo-kolumnowym.
Dodatkowo, wérdd obiektéw pierwszego rzedu lub obiektéw druglego rzedu wystepuje
Jjeden obiekt kontrolny.

Przedstawiono dwa warianty ukladu. Wariant pierwszy dotyczy doswiadczenia, w
ktérym jeden z pozioméw czynnika A jest poziomem kontrolnym. Zajmujemy sie
ukladem, w ktorym kazdy superblok sktada sie tylko z dwéch wierszy 1 dwéch kolumn.
Dodatkowo zakladamy, ze poziom kontrolny spotyka sie tylko z jednym z pozostalych
pozioméw czynnika A, raz w wierszu i raz w kolumnie. Zatem takich superblokéw musi
byé przynajmniej tyle, ile jest pozioméw czynnika A. Dla zwiekszenia precyzji uklad
ten powtdrzono ¢ razy. Wszystkie poziomy czynnika I3 rozmieszczone sa na poletkach
malych wewnatrz kazdego poletka duzego. W wariancie drugim poziomem kontrolnym
jest jeden z pozioméw czynnika . W takie] sytuacji proponuje sie rozmieszezenie na
poletkach duzych, pozioméw czynnika A zgodnie z zasada kwadratu lacinskiego. Dalej
proponuje sie aby kazde poletko duze podzielone zostalo na dwa poletka matle. Na
jednym z poletek malych wystepuje poziom kontrolny czynnika B, a na drugim jeden z
pozostalych pozioméw tego czynnika. Liczba superblokéw musi byé réwna lub wieksza
od liczby obiektéw rzedu drugiego. Podobnie jak w przypadku pierwszym, dla
zwiekszenia precyzji uklad powtdérzono ¢ razy.

Celem tej pracy jest scharakteryzowanie opisanych wyzej ukladéw ze wzgledu na
ogélne zréwnowazenie. Wlasciwo$é ta jest nastepnie wykorzystana przy badaniu
zréwnowazenia ukladu ze wzgledu na efektywnosc.

Proponowane w pracy uklady stosuje sie w doswiadczeniach, w ktorych jednostki
naturalnie mozna podzieli¢ na dwie czesci. Przykladem moze byé podzielenie liScia
wzdluz nerwu gléwnego na dwie polowy. Uklady te stosujemy réwniez w przypadku
gdy materialem dodwiadczalnym sa bliZniacy. Innym przykladem zastosowania moga
byé dodwiadczenia dotyczace organdéw parzystych (np. nerki), badZ symetrycznych
czesci ciala (np. oczy, rece, nogi).

Stowa kluczowe: uklady wierszowo-kolumnowe, uklady niekompletne, obiekty kon-
trolne, wspélezynniki efektywnosei.



